機車廢氣排放污染測試方法及程序

壹、本測試方法及程序適用於施行日期九十三年一月一日排氣量未達 700c.c.之機車在車體動力計上之排氣污染量試驗。

一、一般規定

- (一)試驗結果表格如表1。
- (二)機車之排氣污染量為模擬市區行車型態之排氣污染量。
- (三)試驗結果以公克/公里(g/km)表示。
- (四)距離量測之精確度應在±0.01 公里(km)以內;時間之精確度 應在±0.2 秒(s)以內。
- (五)使用之燃料為機車製造廠指定之燃料,但須符合表2之規定, 並須與燃料消耗量試驗時所使用之燃料相同。
 - 1.其潤滑油為機車製造廠指定之廠牌。
 - 2.使用混合潤滑油的二行程引擎必須按照機車製造廠所規定 的比例混合汽油和潤滑油。

(六)車重

- 1.空車重為機車在無裝載、燃料箱裝滿、潤滑油及冷卻水依 規定充填之狀態下且原廠配件完備之車重。
- 2.參考車重為空車重加60公斤(kg)之重量。
- 3.慣性模擬車重為機車在車體動力計上測試時,模擬測試車 之參考車重等級所設定之慣性模擬車重,詳如表3之規定。 但能提供更詳細之車體動力計慣性模擬車重者亦可。
- (七)正面面積相同,參考車重等級相同,引擎及附件相同,變速箱 型式相同者,可視為同一車型試驗。

二、試驗狀況

(一)車輛狀態

- 1.試驗時只開動必須之動力。
- 2.水冷式引擎水箱及恆溫控制器,必須在正常運轉狀況。
- 3.如引擎使用增壓器,所有控制器必須在原製造廠規定之正 常位置,且在試驗中應正常運轉。
- 4.試驗前機車至少須累積行駛1000公里(km)以上。
- 5.機車各部份所使用之機油,依照原製造廠之建議,並在試驗結果表格中註明。
- 6.機車之輪胎必須與登記試驗車型相同,胎壓與原製造廠規 定相同。但車體動力計規定之滾筒外徑在500 公釐(mm)以 下時,可將胎壓提高30%至50%,此項資料均應註明於試驗 結果表格中。
- 7.惰速及各種調整均應依原廠修護規範辦理,並註明於試驗

結果表格中。

- 8.待試驗機車之排氣系統不可有任何洩漏,以免廢氣外洩, 影響試驗結果。
- 9.試驗環境: 氣溫為293K~303K,絕對濕度為5.5~12.2 公克水/公斤乾空氣(g water/kg dryair)。

(二)車體動力計及負載之設定。

- 1.以車體動力來模擬路面的計行車阻力。車輛在加速或減速 期間之質量是利用飛輪或電氣補償方法模擬其等值慣性質 量。
- 2.動力計的設定必須不受所經過時間的影響,亦不可以使車輛產生任何可感受到的震動和損害到車輛正常操作。
- 3.動力計必須安裝一種速度感測器,使測試車輛的駕駛者, 能在任何時刻比較車輛的實際速度和所要求之速度,並且 因此能夠使駕駛市區行車型態時,合乎要求之精確度。
- 4.車輛的速度是依動力計滾筒轉數來加以決定,對於速度超過10公里/小時(km/h)時,它必須測到±1公里/小時(km/h)之精確度。這種量測速度的裝置,必須和由動力計帶動的距離量測裝置相連接。
- 5. 車體動力計提供之阻力由下列方程式計算:

F=CV2

其中

F:為車體動力計提供的行駛阻力牛頓(N)。

C:為定常數,其參考車重與慣性摸擬車重如表3。

V: 車速, 公尺/秒(m/s)。

- 6.慣性模擬車重車輛的參考車重在車體動力計上必須以慣性 重量予以模擬,參考車重與慣性模擬車重之關係如表3所 示, 其範圍由100 公斤(kg) 至410公斤(kg)。
- 7.在車體動力計上試驗時,需有一輔助風扇作用在車輛冷卻 系統(水冷式)或進氣口(氣冷式),以使測試車輛之引 擎(冷卻水,機油)溫度與道路行駛中之溫度差在±5℃以 內,風扇出口面積至少0.4平方公尺m²,風速與車速同步變 化於10 公里/ 小時(km/h) 以上時, 精確度為±10% , 且 風扇出口最低邊距離地面在0.15公尺(m)與0.2 公尺(m) 之 間,風扇出口端距離車子在0.3 公尺(m) 與0.45公尺(m)之 間。

(三)廢氣取樣系統

1.廢氣取樣系統為量測機車在行駛一段距離內所排放廢氣之 重量,量測時必須在可控制情況下,以大氣稀釋車輛所排 放出之廢氣。

- 2.廢氣取樣系統計算廢氣量應符合下列之規定:
- (1)機車排出之廢氣與稀釋氣體之總體積必須量測,並收集一 定比例體積樣本作取樣。
- (2)由污染物在收集樣本氣體中之濃度及在稀釋氣體之濃度, 計算出其排放污染物之重量。
- 3.廢氣取樣系統在取樣過程中應有除去樣本氣體中水份之裝置。
- 4.機車廢氣取樣系統簡圖如圖1。
- 5.廢氣取樣糸統中所有管路不可有洩漏,且材質不得影響廢氣濃度。

(四)廢氣分析儀

1.廢氣由下列儀器分析:

CO、CO₂由非發散性紅外線分析器(Non-dispersive Infrared Rays , 簡稱NDIR)分析。

HC 由火焰離子分析器(Flame Ionization Detector, 簡稱FID) 分析,以丙烷做校正,以碳當量(C1)來表示。

NOx由化學發光分析器(Chemiluminescent Detector,簡稱CLD)分析,具有NO₂轉換為NO之轉換器。

- 2.精準度分析儀的精確度在±3% 以內。
- 3.校正每一分析儀至少每日做一次標準氣體校正,每六個月 做一次曲線校正。
- (五)廢氣體積量測量測廢氣體積係由廢氣取樣系統來取得,精確度 在±2%以內。
- (六)標準氣體標準氣體包含純氣體及校正氣體,純氣體可用於校正 及操作。
 - 1.氣體純氮:純度在99.95%以上, HC<1ppm, CO<1ppm, CO2<400ppm, NO<0.1ppm。

純空氣:純度在99.95%以上,HC<1ppm,CO<1ppm, CO2<400ppm,NO<0.1ppm。

氧: 體積在18% 至21%之間。

純氧: 純度99.95%以上。

氫:純度40%之氫與純度60%之氦,及純度40%之氫與純度60%之氦;其HC皆不超過1ppm。

純氫: 純度99.95%以上, HC 不超過1ppm。

2.校正氣體C₃H₈ 和純空氣。

CO和純氮。

CO2和純氮。

NO和純氮。

所有校正氣體之濃度精確度在±2%以內。

(七)其他設備

- 1.除非另有規定,溫度必須精確測量到±1.5℃。
- 2.大氣壓力必須精確測量到0.1千帕(kPa)。
- 3.絕對溼度(H)必須精確測量到±5%。

(八)參考環境

氣壓:101.3千帕(kPa)

氣溫:298K

(九)空氣密度機車在量測排氣污染量時,由下列公式計算空氣密度,當時之空氣密度與參考環境之空氣密度差額必須在±7.5%以內。

其中

$$d_T = 2.94 \times d_0 \times \frac{H_T}{T_T}$$

d_T:試驗時之空氣密度。

do:參考環境之空氣密度。

Hr:試驗時之氣壓(千帕,kPa)。

T_T: 試驗時之絕對溫度(K)。

(十)標準市區行車型態

- 1.表5為機車在車體動力計上試驗時所依循之駕駛行車型態週期(參考圖2)為其車速與時間的關係。
- 2.換檔時機車輛按其換檔種類(非自動、半自動、自動), 依製造廠之建議換檔而於加速時得到最平穩之加速度。
- 3.容許差額車輛在車體動力計上駕駛時,車速與行車型態之速度相差應在1公里/小時(km/h)以內,時間相差應在0.5秒(s)以內。

4.情速

情速期間以釋放離合器,檔置於空檔為原則。

5.加速

在加速段中儘量保持定加速度。

車輛之最大加速未能達到需要者,以油門加到最大位置,使車速達到加速段的速度,其增加的時間差額由減少加速以後之定速段時間來平衡。

6. 减速

在減速段中儘量保持定減速度, 油門全關,當車速達10 公里/ 小時(km/h) 時拉離合器。

若減速時間超過行車型態減速時間,則適當的使用煞車。

如車輛在不加油門及煞車之減速時間低於行車型態,其減少之時間差額,由增加接著的惰速段或定速段補償。

車輛在減速至車速為零時,應將排檔置於空檔,並釋放離合器。

7.定速

車輛經過加速段至定速段時,注意勿使車速上昇超過容許差額。

8.換檔分析

機車行車型態每段時間分配如表6所示。

三、模擬市區駕駛之排氣污染量

- (一)機車在抵達測試區域準備做測試時。在預備區的環境溫度必須 介於20°C~30°C之間。
- (二)機車於車體動力計上以定速50公里/小時(km/h),排氣量未達50 立方公分(cc)者以定速40公里/小時(km/h)行駛10公里(km)以 上或行車型態週期連續行駛四次作為暖車。
- (三) 暖車後10 分鐘(min)內完成惰轉污染測試,熄火並推入靜置室開始靜置,靜置室溫度必須介於20℃~30℃之間。
- (四)從機車開始靜置到依市區行車型態做測試開始時,所花的時間 不可少於8小時(hr),不可多於30小時(hr),流程參考圖3。
- (五)機車在整個測試期間保持近乎水平,以避免不正常的燃料分佈。
- (六)依照市區行車型態測試排氣污染。
 - 1.如果車體動力計在2小時(hr)內沒有運轉過,則應該使用非 測試車輛,或相當的方法以50公里/小時(km/h)的速度進行 暖機,其時間至少15分鐘(min)以上。
 - 2.機車於不須啟動引擎的情況下,放置到車體動力計上,該 車之傳動輪須位於動力計的滾筒上。
 - 3.排氣收集管應連接至車輛的尾管上,並確認其連接為氣 密。
 - 4.測試係於動力計上依照市區行車型態進行如圖2。當機車極速無法達到50公里/小時(km/h)時,未達50公里/小時(km/h) 部份以極速方式進行。且須記錄實際行駛速度和時間之關係,該行駛的速度和距離係利用車體動力計滾筒或軸的轉數來測量。
 - 5.發動引擎及惰速 40 秒(s)後,開始取樣。
 - 6.排氣是由測試間環境空氣來稀釋,並以固定流量比例導引 進入排氣取樣收集袋內。
 - 7.取樣流量的速率應該調整到使取樣氣體量足夠穩定分析

用。

- 8.在(九)、之結果與計算中若採用權重a 不等於權重b 之計算公式時,於測試期間是由測試取樣系統將排氣導引進入二個排氣取樣收集袋內;第一個階段收集袋是收集市區行車型態最先390 秒(s)期間的排氣試樣。第二個階段收集袋是收集391 秒(s)至780 秒(s)期間的排氣試樣。而九、之結果與計算中若採用權重a 等於權重b 之計算公式時,其780秒(s)測試期間可由測試取樣系統將排氣導引進入一個排氣取樣收集袋內或者可將排氣導入二個排氣取樣收集袋內。
- 9.排氣流量測量裝置及取樣選擇閥應加以調整,使得排氣取 樣在第一階段時能被導引進入排氣取樣收集袋內,並使得 環境空氣取樣也能進入另外一個袋內。
- 10.在取樣袋中的CO、CO2、HC及NOx的濃度隨後被分析。 在每一階段所收集到相對應環境空氣試樣,是為了能夠對 環境空氣濃度的影響做修正。
- 11.引擎應在最後一個減速車況後(780秒(s))關閉,在引擎 停止運轉同時停止取樣。
- 12.該引擎應依照製造廠附給車主手冊上的操作說明來啟動。 在冷啟測試階段時,如果該引擎在發動10秒(s)後無法啟動,應停止發動並且找出啟動失敗的原因加以修復。若修 復工作在30分鐘(min)內完成,則測試可以繼續進行。
- 13.如引擎啟動後又熄火,駕駛員應該重複該啟動程序,但機 車在1分鐘(min)內無法再啟動,該測試應為無效且須進行 修復工作。
- 14.如引擎在惰轉階段熄火,應立即再啟動,並繼續進行該測試。如果引擎不能立刻啟動,致機車無法跟上次一個規定之加速度,則應停止行車型態指示器但繼續取樣。當引擎再啟動時,行車型態指示器應該重新再作動。如引擎熄火是在操作型態期間而非惰轉階段時,則行車型態指示器應該停止,但繼續取樣。該機車應隨後重新再啟動並且加速到行車型態在熄火點所要求之速度,並繼續測試。

(七)分析程序

- 1.收集於袋中的排氣,在取樣結束後,應儘速加以分析。在 取樣袋中的稀釋後排氣及環境空氣,必須在每一階段結束 後的20分鐘(min)內加以分析,流程參考圖3。
- 2.在每一取樣分析前,每一污染物所使用的分析儀範圍,應 以適當的標準氣體(純氣體)設定到零。
- 3.分析儀應該以具有公稱濃度介於全刻度的70%和100%之間

的標準氣體 (校正氣體)來校正。

- 4.分析儀的歸零應該稍後再檢查。如果讀數和前2·所設定的 值偏差超過2%時,該程序必須重做。
- 5.分析取樣。
- 6.在分析之後,歸零及跨距應該使用相同的氣體重新再檢查。如果這些複檢值在前3 · 所說明的2%以內時,分析的結果便可以接受。
- (八)市區換檔時機由製造廠商提供。
- (九)結果與計算當市區行車型態期間,以下列的公式計算污染排 放值:
 - 1.權重a不等於權重b時, Mi = a (Mic/Sc) +b (Mih/Sh)
 - 2.權重a等於權重b時,Mi=Mit/St其中:a、b為權數,參考 表4之說明

Mi =市區行車型態i 成份的污染排放係數,單位:公克/公里 (g/km)

Mic = 市區行車型態第一階段i 成份的污染物重量,單位: 公克(g)

Mih = 市區行車型態第二階段i 成份的污染物重量,單位: 公克(g)

Sc = 市區行車型態第一階段的行駛距離,單位:公里(km)

Sh = 市區行車型態第二階段的行駛距離,單位:公里(km)

Mit = 市區行車型態780 秒(s)i 成份的污染物重量,單位: 公克(g)

St = 市區行車型態780 秒(s)的行駛距離,單位:公里(km) 在每一階段排氣污染量由下式計算至小數點以下四位:

Mic(ih)(it)=Vmix×Qi×Kh×Ci×0.000001 其中

Mic(ih)(it):廢氣中污染物重量(公克,g)。

Vmix:稀釋後混合氣修正為參考環境時之體積(公升/測次,L/ test)。

Qi:污染物在參考環境時之密度(公克/公升,g/L),

Qco=1.1451 公克/公升(g/L)。

QCH1.85: 0.5671公克/公升(g/L), QNOx=1.878公克/公升(g/L)。

Kh為計算氮氧化物重量時對濕度之修正係數:

(計算CO、HC時為1.0)

 $Kh=1/[1-0.0329\times(H-10.71)]$

 $H=6.211\times Ra\times Pd/(Pb-(Pd\times Ra)\times 0.01)$

其中

H:絕對濕度(公克水/公斤乾空氣, gwater/kg dryair)。

Ra:大氣之相對濕度(%)。

Pb:室內大氣壓力(千帕,kPa)。

Pd:環境溫度下之飽和蒸氣壓力(千帕,kPa)。

Ci:稀釋後廢氣污染物淨濃度 (ppm)。

 $Ci=Ce-Cd(1-1/DF) \circ$

其中

Ce:稀釋後廢氣中污染物之濃度 (ppm)。

Cd:稀釋空氣中污染物之濃度(ppm)。

DF 為稀釋因子:

$$DF = \frac{14.5}{C_{CO_2} + 0.5 C_{CO} + C_{HC}} \% (V/V)$$

其中

Cco2:收集袋中CO2氣體之濃度(%)。

CHC:收集袋中HC 氣體之濃度(%)。

Cco: 收集袋中CO 氣體之濃度(%)。

(十)結果之採用由主管機關訂定之。

四、引用標準:

CNS 1218 石油產品之蒸餾試驗法

CNS 3103 機器腳踏車運轉試驗方法總則

CNS 3577 液體石油產品中烴類型態之檢驗法(螢光性吸收法)

CNS 6360 石油產品硫分測定法(氧彈法)

CNS 12012 石油產品雷氏蒸氣壓試驗法

CNS 12013 汽油含鉛量試驗法(原子吸光光譜分析法)

CNS 12014 汽油氧化穩定性試驗法 (誘導期法)

CNS 12017 原油及液體石油產品密度,相對密度(比重)或API比重測定法(比重計法)

表 1、試驗結果表格

編號		委託單位		試驗日期	年 月	B	試驗員	
車	ږ	身	31		擎	傳 動	機	構
製造廠			引擎型式			傳動型式		
車 型			引擎號碼			換檔方式		
車 種			總排氣量		L	變	一檔	
製造年份			內徑×衝程		mm×mm		二檔	
全 寬			em 氣缸數				三檔	
全 高		(m情速轉速		rpm	速	四檔	
駕駛高度		•	m最大輸出功率	kW,在_			五檔	
空 重]	Kg最大輸出扭矩	N.m,在	rpm	比	六檔	
參考車重		1	Kg燃油			備考:		
阻 力			引擎機油			1角汚・		
輪胎製造廠			二行程潤滑油			試驗結果		
輪胎規格			增壓裝置			模擬市區	駕駛	
輪胎胎壓	前kg/cm²	,後kg/cm²				CO(一氧	化碳)	g/km
行駛里程		k	Sm			HC (碳	氫化合物)	g/km
						NOx (§	f.氧化物)	g/km

表2、試驗用油規範(無鉛汽油)

項目及單位	限制值	試驗法				
		CNS 12017 [原油及液體石油產品密				
密度(15℃)	0.741~0.755	度、相對密度(比重)或 API 比重測				
		定法 (比重計法)]				
雷氏蒸氣壓(kPa)	56~64	CNS 12012[石油產品雷氏蒸氣壓試驗				
由以然私生(Ki a)	30 04	法]				
蒸餾試驗(℃)						
初沸點	24~40					
10%	42~58					
50%	90~110	CNS 1218[石油產品之蒸餾試驗法]				
90%	150~170					
終沸點	185~215					
殘餘量(Vol%)	最高 2					
成份分析						
(Vol%)						
烯烴	最高 10	CNS 3577 [液體石油產品中烴類型態				
芳香烴	最高 45	之檢驗法(螢光性吸收法)〕				
飽和烴	平衡值					
氧化穩定性(分)	最低 480	CNS 12014 [汽油氧化穩定性試驗法				
	取10.400	(誘導期法)〕				
 含硫量(wt%)	最高 0.04	CNS 6360[石油產品硫分測定法(氧彈				
ロツル里(ハンク)	30.01	法)]				
 含鉛量(g/L)	最高 0.013	CNS 12013 [汽油含鉛量試驗法(原子				
1 ×1 ± (5, 2)	13,010,10	吸光光譜分析法)〕				

備考

- 1:上述燃料僅須含國內市供汽油通用滲配油料摻配之。
- 2:上述燃料可添加汽油添加劑常用之濃度。
- 3:市供汽油性能項目相當於上述性能,經主管機關認可後可作壹、二、(一)、4、節之累積里程用,但辛烷值等級須合乎製造廠指定之市售汽油。

表3、參考車重與慣性模擬車重之關係

試驗車多	於考車重	慣性模擬		測試車	參考車重	慣性模擬	
(k	g)	車重(kg)	С	(kg)		車重(kg)	С
(超過)	(至)			(超過)	(至)		
0	105	100	0.328	255	265	260	0.424
105	115	110	0.334	265	275	270	0.430
115	125	120	0.340	275	285	280	0.436
125	135	130	0.346	285	295	290	0.442
135	145	140	0.352	295	305	300	0.448
145	155	150	0.358	305	315	310	0.454
155	165	160	0.364	315	325	320	0.460
165	175	170	0.370	325	335	330	0.466
175	185	180	0.376	335	345	340	0.472
185	195	190	0.382	345	355	350	0.478
195	205	200	0.388	355	365	360	0.484
205	215	210	0.394	365	375	370	0.490
215	225	220	0.400	375	385	380	0.496
225	235	230	0.406	385	395	390	0.502
235	245	240	0.412	395	405	400	0.508
245	255	250	0.418	405		410	0.514

表4、a、b 權重表

	污染項目	a	ь
二行程	СО	0.5	0.5
	HC+NO	0.5	0.5
- 15 60	СО	0.5	0.5
四行程	HC+NO _x	0.5	0.5

表 5、機車行車型態

操	作	操作名稱	段	加速度	車速	時	웹 (s)	累積時間	手排檔時機
次	序	कार 11- अंग्र अन्य	7.2	(m/sec2)	(km/h)	操作	段	(s)	1 97F100 HJ 17X
1		惰速	1		0	11	11	11	6s PM+5s K
2		加速	2	1.04	0-15	4	4	15	
3		定速	3		15	8	8	23	依據廠商規範
4		減速	٦,	-0.69	15-10	2	-	25	
5		減速、踩離合器	4	-0.92	10-0	3	5	28	K
6		情速	5		0	21	21	49	16s PM+5s K
7		加速	6	0.74	0-32	12	12	61	
8		定速	7		32	24	24	85	依據廠商規範
9		減速		-0.75	32-10	8	1,,	93	
10		減速、踩離合器	8	-0.92	10-0	3	11	96	K
11		惰速	9		0	21	21	117	16s PM+5s K
12		加速	10	0.53	0-50	26	26	143	
13		定速	11		50	12	12	155	
14		減速	12	-0.52	50-35	8	8	163	依據廠商規範
15		定速	13		35	13	13	176	
16		減速	1,,	-0.68	35-10	9	1,2	185	
17		減速、踩離合器	14	-0.92	10-0	3	12	188	K
18		惰速	15		0	7	7	195	7s PM

表6、機車行車型態每段時間分配

段	時間 (s)		分比 6)	
惰速	60	30.8	25.4	
減速,拉離合器	9	4.6		
加速	42	21.5		
定速	57	29.2		
減速	27	13	3.9	
合計	195	10	0.0	

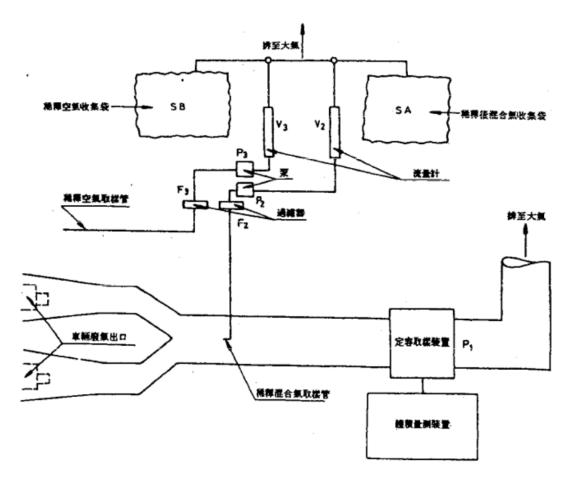


圖1、機車廢氣取樣系統簡圖

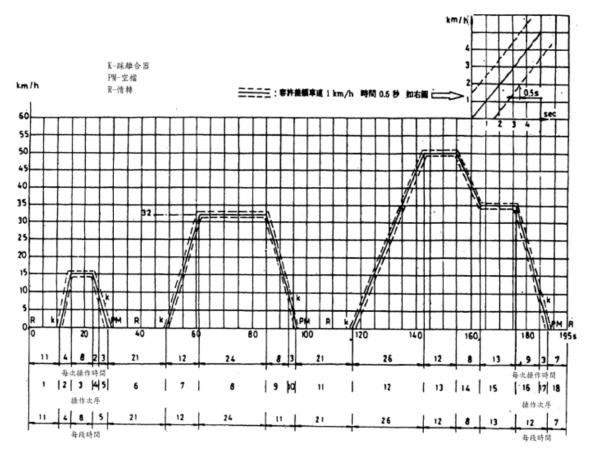


圖 2、機車市區行車型態

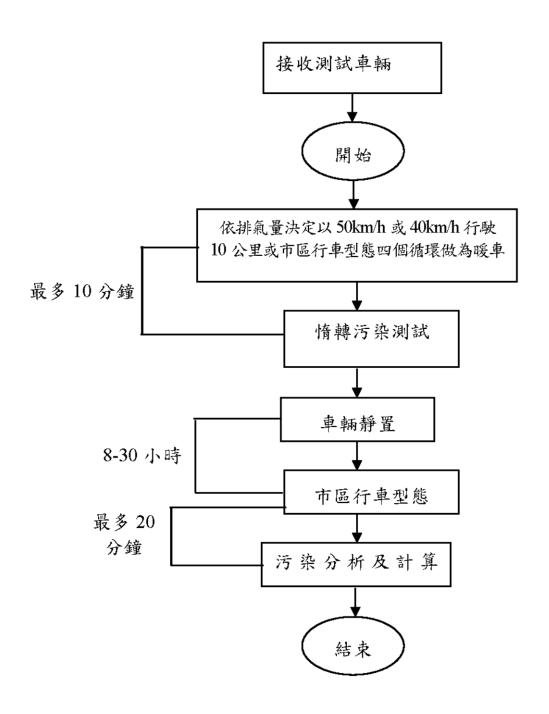


圖 3、機車廢氣排放測試流程

貳、本測試方法及程序適用於施行日期九十六年七月一日之機車在車體 動力計上之排氣污染量試驗。

一、一般規定

- (一)試驗結果表格如表7。
- (二)機車之排氣污染量為模擬行車型態之排氣污染量。
- (三)試驗結果以公克/公里(g/km)表示。
- (四)距離量測之精確度應在±0.01 公里(km)以內;時間之精確度應在±0.2 秒(s)以內。
- (五)新車型審驗測試、逐車測試、新車抽驗測試及使用中車輛召回 改正調查測試所使用汽油,須符合表8之規定。 品管測試須使用符合表8之汽油,或市售用油。替代清潔燃 料及混合燃料車輛,在中央主管機關未公告測試用油規範前, 應使用已商品化、市面上可以取得之替代清潔燃料及混合燃 料。複合動力電動機車,應使用符合該內燃機燃料類別之油品 規範燃料。另所使用之潤滑油依機車製造廠指定之廠牌,如為 使用混合潤滑油之二行程引擎必須按照機車製造廠所規定之比 例混合汽油和潤滑油。

(六)車重

- 1.空車重定義為機車在無裝載、燃料箱裝滿(或計算相當於裝滿)90%以上、潤滑油及冷卻水依規定充填之狀態下且原廠配件完備之車重。
- 2.參考車重為空車重加75 公斤(kg)之重量。
- 3.慣性模擬車重為機車在車體動力計上測試時,模擬測試車之 參考車重等級所設定之慣性模擬車重,詳如表9之規定。但 能提供更接近參考車重之車體動力計慣性模擬車重者亦可。
- (七)正面面積相同,參考車重等級相同,引擎及附件相同,變速箱 型式相同者,可視為同一車型試驗。
- (八)複合動力電動機車其電動馬達與內燃機引擎之動力輸出切換機 制為手動切換者,全程應以純內燃機引擎之動力輸出方式進 行測試,動力輸出切換機制為自動切換者,應以原廠設定之 正常使用模式進行測試。

二、試驗狀況

(一)車輛狀態

- 1.試驗時只開動必須之動力。
- 2.水冷式引擎水箱及恆溫控制器,必須在正常運轉狀況。
- 3.如引擎使用增壓器,所有控制器必須在原製造廠規定之正常 位置,且在試驗中應正常運轉。
- 4.試驗前機車至少須累積行駛1000 公里(km)以上,若不足

1000 公里(km)時,則由送測廠商自行決定。

- 5.機車各部份所使用之機油,依照原製造廠之建議,並在試驗 結果表格中註明。
- 6.機車之輪胎必須與登記試驗車型相同,胎壓與原製造廠規定相同。但車體動力計規定之滾筒外徑在500 公釐(mm)以下時,可將胎壓提高30%至50%,此項資料均應註明於試驗結果表格中。
- 7.情速及各種調整均應依原廠修護規範辦理,並註明於試驗結果表格中。
- 8.待試驗機車之排氣系統不可有任何洩漏,以免廢氣外洩,影響試驗結果。
- 9.試驗環境: 氣溫為293K~303K ,絕對濕度為5.5~12.2 公克 水/公斤乾空氣(g water/kg dry air)。

(二)車體動力計及負載之設定

- 1.以車體動力來模擬路面的計行車阻力。車輛在加速或減速期 間之質量是利用飛輪或電氣補償方法模擬其等值慣性質量。
- 2.動力計的設定必須不受所經過時間的影響,亦不可以使車輛 產生任何可感受到的震動和損害到車輛正常操作。
- 3.動力計必須安裝一種速度感測器,使測試車輛之駕駛者,能 在任何時刻比較車輛之實際速度和所要求之速度,並且能夠 使駕駛市區行車型態時,合乎要求之精確度。
- 4.車輛速度是由量測動力計滾筒之切線速度而得,車輛速度在 0 到10公里/ 小時(km/h)之間,量測精確度在 ±2 公里/ 小 時(km/h)以內,車輛速度超過10公里/ 小時(km/h)時,則量 測精確度在 ±1 公里/ 小時(km/h)以內。
- 5. 車體動力計提供之阻力由下列方程式計算:

FT = a + bV2

其中

FT:為車體動力計提供的行駛阻力,牛頓(N)。

a:為前輪滾動阻力, 牛頓(N),其值如表9。

b: 為空氣動力阻力係數,牛頓/(公里/小時)2 $[N/(km/h)^2]$,其值如表9。

V: 車速,公里/小時(km/h)。

6.動力計阻力設定確認

至少應以四個指定速度點對底盤動力計之行駛阻力作確認, 指定速度點之間距不得超過20 公里/小時(km/h),且間距應 相同。在初始設定之後,應立即量測指定速度對應於車體動 力計上之滑行時間,在量測滑行時間之過程中,機車不應置 於車體動力計上,當車體動力計之速度超過測試型態之最大速度時,即可開始量測滑行時間,量測至少應執行三次,並由這些結果計算平均滑行時間 $\Delta t E$ 。在指定速度v j 下,由初速度v l 滑行至末速度v 2,其對應於車體動力計上之行駛阻力

FE(vj)可由以下

公式計算:

 $v1=vj+\Delta v$

 $v2=vj-\Delta v$

$$F_{E}(v_{j}) = \frac{1}{3.6} m_{i} \frac{2\Delta v}{\Delta t_{E}}$$

其中

mi: 慣性模擬車重, 公斤(kg),如表9

2Δv:滑行之速度差,公里/小時(km/h)= v1-v2

 ΔtE :平均滑行時間,秒(s)在指定速度點之設定誤差 ϵ

計算如下:

$$\varepsilon = \frac{\left| F_{E} \left(v_{j} \right) - F_{T} \right|}{F_{T}} \times 100$$

其中

 F_T : 依表9 計算之行駛阻力,牛頓(N)

若設定誤差不符以下要求,則須重新調整車體動力計,並重 複上述步驟,直到設定誤差符合要求為止:

ε≦ 2%,當v≥50 公里/ 小時(km/h)

 $\epsilon \le 3\%$,當30公里/小時(km/h) $\le v < 50$ 公里/小時(km/h)

ε≦ 10%,當v<30 公里/小時(km/h)

- 7.慣性模擬車重車輛之參考車重在車體動力計上必須以慣性重量予以模擬,其參考車重與慣性模擬車重之關係如表9 所示。
- 8.在整個測試期間,一個變速冷卻風扇應置於機車前方,將冷卻空氣直接吹向機車,以模擬實際之操作狀態,風扇速度之要求如下:動力計滾筒切線速度在10 到50 公里/小時(km/h)範圍內,風扇出口之空氣直線速度與滾筒切線速度之偏差應在±5 公里/小時(km/h)以內,滾筒切線速度在50 公里/小時(km/h)以上時,空氣直線速度與滾筒切線速度之偏差應在±10%以內,當滾筒切線速度低於10 公里/小時(km/h)時,空氣直線速度可以為零。

前項空氣直線速度應為九個量測點之平均值,這九個量測點

應位於將風扇出口劃分為九個矩形區域之中心點(將風扇出口之垂直邊與水平邊各劃分為三個相等部分),這九個點之量測值應在此九個點平均值之10%之內。

風扇出口截面積至少應為0.4平方公尺(m2),風扇出口下緣應 距地板5 到20 公分(cm),風扇出口應與機車縱軸方向垂 直,並置於機車前輪前方30 到45公分(cm),空氣直線速度 之量測裝置應置於離風扇出口0到20 公分(cm)處。

(三)廢氣取樣系統

- 1.廢氣取樣系統為量測機車在行駛一段距離內所排放廢氣之重量,量測時必須在可控制情況下,以環境空氣稀釋車輛所排放出之廢氣。
- 2.廢氣取樣系統計算廢氣量應符合下列之規定:
 - (1)機車排出之廢氣與稀釋氣體之總體積必須量測,並收集一 定比例體積樣本作取樣。
 - (2)由污染物在收集樣本氣體中之濃度及在稀釋氣體之濃度, 計算出其排放污染物之重量。
- 3.廢氣取樣系統在取樣過程中應避免取樣氣體中水份之凝結。
- 4.機車廢氣取樣系統簡圖如圖4。
- 5.廢氣取樣糸統中所有管路不可有洩漏,且材質不得影響廢氣 濃度。

(四)廢氣分析儀

1.廢氣由下列儀器分析:

CO、CO₂ 由非發散性紅外線分析器 (Non-dispersive Infrared Rays, 簡稱NDIR)分析。

HC 由火焰離子分析器(Flame Ionization Detector,簡稱

FID)分析,以丙烷做校正,以碳當量(C1)來表示。

NOx 由化學發光分析器 (Chemilumine scent Detector,簡稱 CLD)分析,具有NO2 轉換為NO 之轉換器。

2.精準度

分析儀的精確度在±3%以內。

3.校正

每一分析儀至少每日做一次標準氣體校正,每六個月做一次曲線校正。

- (五)廢氣體積量測量測廢氣體積係由廢氣取樣系統來取得,精確度 在±2%以內。
- (六)標準氣體標準氣體包含純氣體及校正氣體,純氣體可用於校正 及操作。
 - 1. 氣體

純氮: 純度在99.95% 以上, HC<1ppm, CO<1ppm,

 $CO_2 < 400 ppm$, NO < 0.1 ppm \circ

純空氣:純度在99.95% 以上, HC<1ppm, CO<1ppm,

 CO_2 <400ppm , NO<0.1ppm °

氧:體積在18%至21%之間。

純氧: 純度99.95%以上。

氫:純度40%之氫與純度60%之氦,及純度40%之氫與純度

60%之氮;其HC 皆不超過1ppm。

純氫: 純度99.95% 以上, HC 不超過1ppm。

- 2.校正氣體
- C3H8 和純空氣。
- CO 和純氮。
- CO2 和純氮。
- NO 和純氮。

所有校正氣體之實際與標示濃度差異須在±2%以內。

(七)其他設備

- 1.稀釋混合氣溫度必須精確測量到±1°C以內,測試間溫度必須 精確測量到±2°C以內。
- 2.大氣壓力必須精確測量到±0.133千帕(kPa)。
- 3. 絕對溼度(H) 必須精確測量到±5%。
- (八)參考環境氣壓:101.33 千帕(kPa)氣溫:273 K

(九)行車型態

- 1.表10 為機車在車體動力計上試驗時所依循之標準市區行車型態(參考圖5)各段操作時間說明表,表11為機車在車體動力計上試驗時所依循之非市區行車型態(參考圖6)各段操作時間說明表。
- 2.換檔時機車輛按其換檔種類(非自動、半自動、自動),依 製造廠之建議換檔而於加速時得到最平穩之加速度。
- 3.容許誤差車輛在車體動力計上駕駛時,車速與行車型態之速度相差應在1公里/小時(km/h)以內,在型態變換過程中,可允許車速超出偏差範圍,但除貳、二、(九)、5節及貳、二、(九)、6節以外之任何情況下,其超過偏差之時間應在0.5秒(s)以內。

時間容許誤差應在±0.5 秒(s)以內。

速度與時間之複合容許誤差如圖5 所示。

量測行車型態行駛距離之容許誤差必須在±2%之內。

4. 情速

(1)手排變速箱在引擎惰轉期間離合器必須接合,而且檔位為

空檔。為使加速依正常之行車型態進行,車輛必須在惰轉之最後階段、開始加速之前5秒(s),分開離合器並排入一檔。市區行車型態開始之第一個惰轉階段,其時間包含離合器位於接合狀態之空檔之6秒(s)惰轉,以及離合器位於分離狀態之一檔之5秒(s)惰轉。在市區行車型態之其他惰轉階段,其時間包含離合器位於接合狀態之空檔之16秒(s)惰轉,以及離合器位於分離狀態之一檔之5秒(s)惰轉。市區行車型態之最後一個惰轉階段,其時間為離合器位於接合狀態之空檔之7秒(s)惰轉。

(2)半自動變速箱

依製造廠之操作說明進行, 如無規定,則依手排變速箱 相關規定進行。

(3)自動變速箱在測試期間,任何時間都不能操作選擇 桿,除非製造廠另有規定,在後者情況下,應依手排變 速箱之步驟進行。

5.加速

在加速過程中,加速度之變化率應盡可能保持穩定。若機車之加速能力,不足以在到加速階段所規定之車速;機車之節流閥就必須完全打開,一直到達到行車型態中所規定之速度 為止;然後依規定進行後續之行車型態。

6.減速

所有之減速都必須完全關閉節流閥,離合器處於接合狀態,當時速達到10公里/小時(km/h)時或引擎運轉開始不穩定時,應使離合器分離。

若實際減速時間比規定之時間長,應使用煞車以跟上行車型態。

若實際減速時間比規定之時間短,則車速應以後續階段相同之穩定狀態或惰轉狀態進行並接續下去,以恢復理論之行車型態時間,在此狀況下,貳、二、(九)、3節之規定並不適用。

減速階段結束時(機車停止在動力計上),檔位應置於空檔,並使離合器接合。

7.定速

由加速過渡到定速時,應避免猛然加油或關閉節流閥情形。定速階段應以保持節流閥位置不變之方式達成。

三、模擬行車型態之排氣污染量

(一)測試前;機車須於燃料箱加入20%以上容量之測試用油,置於 靜置室靜置,靜置室環境溫度必須介於20°C~30°C之間。

- (二)車輛須充分靜置直到引擎機油或冷卻水溫度與靜置室的環境溫 度相差在±2K以內,才能進行行車型態測試,流程參考圖7。
- (三)機車在整個測試期間保持近乎水平,以避免不正常的燃料分 佈。
- (四)依照行車型態測試排氣污染。
 - 1.如果車體動力計在2 小時(hr)內沒有運轉過,則應該使用非 測試車輛,或相當的方法以50 公里/ 小時(km/h)的速度進行 暖機,其時間至少15 分鐘(min)以上。
 - 2.機車於不須啟動引擎的情況下,放置到車體動力計上,該車 之傳動輪須位於動力計的滾筒上。
 - 3.用於收集測試期間車輛排氣之裝置應為密閉式系統,排氣收 集管應連接至車輛之尾管上,並確認其連接為氣密,其排氣 背壓變化應在±1.25 千帕(kPa)以內;若能確保車輛排氣管 出口處保持環境大氣壓力下,所有之排氣都能被收集,也可 使用開放式之裝置。在測試溫度下,排氣之收集必須不可發 生會影響排氣性質之凝結現象。
 - 4.測試係於動力計上依照行車型態進行,引擎排氣量小於150 立方公分(cm3)之機車,其測試行車型態為連續行駛6 個標準市區行車型態(標準市區行車型態參考圖5),共1170 秒(s)之測試,引擎排氣量大於(含)150立方公分(cm3)之機車,其測試行車型態為連續行駛6 個標準市區行車型態再加上1個非市區行車型態(非市區行車型態參考圖6),共1570 秒(s)之測試。對於排氣量大於(含)150立方公分(cm3)之機車,若其允許之最大車速不超過(含)110公里/小時(km/h),則非市區行車型態之最大車速以90公里/小時(km/h)為限。且須記錄實際行駛速度和時間之關係,該行駛之速度和距離係利用車體動力計滾筒或軸之轉數來測量。
 - 5.發動引擎時,同時開始取樣。
 - 6.原則上手動阻風門應於第一個0~50 公里/小時(km/h)加速階 段前儘早關閉,無法達此要求,應註明實際關閉之時間。阻 風門必須依製造商之規定來進行調整。
 - 7.排氣是由測試間環境空氣來稀釋,並以固定流量比例導引進 入排氣取樣收集袋內。
 - 8.取樣流量之速率應該調整到使取樣氣體量足夠穩定分析用, 取樣系統之氣體流量至少應為150 公升/小時(L/h)。
 - 9.測試期間,排放之廢氣被環境空氣稀釋,稀釋混合氣之流量 應維持定值,測試過程中,稀釋混合氣之取樣氣體應連續流 到一個或多個取樣袋中,以計算各污染物之濃度平均值。

- 10.稀釋混合氣流量測量裝置及取樣選擇閥應加以調整,使得 稀釋混合氣取樣氣體在第一階段時能被導引進入稀釋混合 氣取樣收集袋內,並使得環境空氣取樣也能進入另外一個 袋內。
- 11.在取樣袋中之CO、CO2、HC及NOx 之濃度隨後被分析。 在每一階段所收集到相對應環境空氣取樣氣體,是為了能 夠對環境空氣中污染物濃度之影響做修正。
- 12.行車型態測試應在最後一個減速車況後(1170 秒(s)或1570 秒(s))結束,同時停止取樣,並儘快於10 分鐘(min)內完成 惰轉狀態污染測試(參考附錄一)。
- 13.該引擎應依照製造廠附給車主手冊上的操作說明來啟動。 在冷啟測試階段時,如果該引擎在開始測試10 秒(s)內無法 啟動,應停止發動並且找出啟動失敗的原因加以修復。若 修復工作在30 分鐘(min)內完成,則測試可以重新進行。
- 14.如開始測試後又熄火,駕駛員應該重複該啟動程序,但機車在10 秒(s)內無法再啟動,該測試視為無效,但具惰轉熄火(idle-stop) 功能之車輛除外。

(五)分析程序

- 1.在取樣袋中之稀釋混合氣及環境空氣,必須在測試結束後20 分鐘(min)內加以分析,流程參考圖7。
- 2.在每一取樣氣體分析前,每一污染物所使用之分析儀範圍, 應以適當之歸零氣體(zero gas)設定到零。
- 3.分析儀應該以具有公稱濃度介於全刻度70%至100% 間之全幅氣體(span gas)來校正。
- 4.分析儀之歸零應該再檢查。如果讀值和貳、三、(五)、2 所 設定之值,其偏差超過2%時,該程序必須重做。
- 5.分析取樣氣體。
- 6.在分析之後,歸零(zero) 及跨距(span)應該使用相同之氣體 重新再檢查。如果這些複檢值與貳、三、(五)、3設定值之 偏差在2%以內時,分析之結果便可以接受。
- (六)換檔時機由製造廠商提供。
- (七)結果與計算當行車型態期間,以下列之公式計算污染排放值: Mi = Mit / St 其中:

Mi=行車型態i 成份之污染排放值,單位:公克/公里(g/km)

Mit = 行車型態1170 秒(s) (或1570 秒(s)) i 成份之污染物 重量,單位:公克(g)

St = 行車型態1170秒(s) (或1570 秒(s)) 之行駛距離,單位:公

里 (km)

排氣污染量由下式計算至小數點以下四位:

Mit=Vmix×Qi×Kh×Ci×0.000001

其中

Vmix:稀釋後混合氣修正為參考環境時之體積,公升/測次 (L/test)。

Qi:i 成份之污染物在參考環境時之密度,公克/公升(g/L), Qco=1.250,公克/公升(g/L)。

QCH1.85 : 0.619 , 公克/公升(g/L), QNOx=2.05 , 公克/公升(g/L)。

Kh 為計算氮氧化物重量時對濕度之修正係數: (計算CO、 HC 時為1.0)

$$K_{\lambda} = \frac{1}{1 - 0.0329 \times (H - 10.7)}$$

$$H = \frac{6.2111 \times U \times P_d}{P_a - P_d \times \frac{U}{100}}$$

H:測試間大氣之絕對濕度,公克水/公斤乾空氣(gwater/kg dry air)。

U:測試間大氣之相對濕度(%)。

Pa: 測試間大氣壓力 (千帕, kPa)。

Pd:環境溫度下之飽和水蒸氣壓力(千帕,kPa)。

Ci:稀釋混合氣收集袋中i 成份污染物淨濃度(ppm),並以下述公式修正。

 $Ci=Ce-Cd(1-1/DF) \circ$

其中

Ce:稀釋混合氣收集袋中i 成份污染物之濃度(ppm)。

Cd:稀釋空氣收集袋中i 成份污染物之濃度(ppm)。

DF 為稀釋因子:

$$DF = \frac{14.5}{C_{CO2} + 0.5 C_{CO} + C_{HC}} \% (V/V)$$

其中

Cco₂:稀釋混合氣收集袋中CO2氣體之濃度(%)。

CHC:稀釋混合氣收集袋中HC 氣體之濃度(%)。

Cco:稀釋混合氣收集袋中CO 氣體之濃度(%)。

(八)結果之採用由主管機關訂定之。

四、引用標準:

EN 25164

EN 25163 ISO 3675 Pr EN ISO 13016-1(DVPE) EN-ISO 3405 ASTM D 1319 Pr. EN 12177 EN-ISO 7536 EN 1601 EN-ISO 6246 ASTM D 5453 EN-ISO 2160

EN 237

表 7、試驗結果表格

		表 /、試驗料	未衣格				
編號	委託單位		試驗日期	年 月	日	試驗員	
車	身	31	學	ž.	傳 動	機	構
製 造 廠		引擎型式			傳動型式		
車 型		引擎號碼			換檔方式		
車 種		總排氣量		L	變	一檔	
製造年份		內徑×衝程		mm×mm		二檔	
全 寬	cm	氣缸數				三檔	
全 高	cm	惰速轉速		rpm	速	四檔	
駕駛高度	cm	最大輸出功率	kW,在_	_rpm		五檔	
空重		最大輸出扭矩	N.m,在_	rpm	比	六檔	
參考車重	kg	燃油			備考:		
阻 力		引擎機油			湘方:		
輪胎製造廠		二行程潤滑油			試驗結果		
輪胎規格		增壓裝置			模擬行車	型態駕駛	
輪胎胎壓	前kg/cm²,後kg/cm²				CO (一氧	化碳)	g/km
行駛里程	km				HC (碳氢	直化合物)	g/km
					NΟ _x (§	〔氧化物)	g/km

表 8、試驗用油規範 (無鉛汽油)

石 口	四 /2-	限	制值	ተ፡ ለክ ፈሩ
項目	單位	最低	最高	試驗法
研究法辛烷值,RON		95.0		EN 25164
馬達法辛烷值,MON		85.0		EN 25163
密度(15℃)	kg/m³	740	754	ISO 3675
				Pr EN ISO
雷氏蒸氣壓	kPa	56.0	60.0	13016-1
				(DVPE)
蒸餾				
— 在 70℃ 蒸發	% v/v	24.0	40.0	EN-ISO 3405
— 在 100℃ 蒸發	% v/v	50.0	58.0	EN-ISO 3405
— 在 150℃ 蒸發	% v/v	83.0	89.0	EN-ISO 3405
— 終餾點	$^{\circ}\!\mathbb{C}$	190	210	EN-ISO 3405
殘留量	% v/v		2. 0	EN-ISO 3405
碳氫成份分析				
烯烴	% v/v		10.0	ASTM D 1319
芳香烴	% v/v	29.0	35.0	ASTM D 1319
苯	% v/v		1.0	ASTM D 1319
飽和烴	% v/v	如	報告	Pr. EN 12177
碳/氫比		如	報告	
誘導期	minutes	480		EN-ISO 7536
氧含量	% m/m		1.0	EN 1601
膠含量	mg/ml		0.04	EN-ISO 6246
硫含量	mg/kg		10	ASTM D 5453
銅片腐蝕性			class 1	EN-ISO 2160
鉛含量	mg/l		5	EN 237

表 9、參考車重與慣性模擬車重之關係 (適用符合 96 年 7 月 1 日排放標準)

試驗車參考車重 m _{ref} (kg)	慣性模擬車重 m _i (kg)	前輪滾動阻力 'a'(N)	空氣動力阻力係數 'b' (N/(km/h)²) (¹)
$95 < m_{ref} \leq 105$	100	8.8	0.0215
$105 < m_{ref} \le 115$	110	9.7	0.0217
$115 < m_{ref} \le 125$	120	10.6	0.0218
$125 < m_{ref} \le 135$	130	11.4	0.0220
$135 < m_{ref} \le 145$	140	12.3	0.0221
$145 < m_{ref} \le 155$	150	13.2	0.0223
$155 < m_{ref} \le 165$	160	14.1	0.0224
$165 < m_{ref} \le 175$	170	15.0	0.0226
$175 < m_{ref} \le 185$	180	15.8	0.0227
$185 < m_{ref} \le 195$	190	16.7	0.0229
195 < m _{ref} ≤ 205	200	17.6	0.0230
205 < m _{ref} ≤ 215	210	18.5	0.0232
215 < m _{ref} ≤ 225	220	19.4	0.0233
225 < m _{ref} ≤ 235	230	20.2	0.0235
235 < m _{ref} ≤ 245	240	21.1	0.0236
$245 < m_{ref} \le 255$	250	22.0	0.0238
255 < m _{ref} ≤ 265	260	22.9	0.0239
$265 < m_{ref} \le 275$	270	23.8	0.0241
275 < m _{ref} ≤ 285	280	24.6	0.0242
285 < m _{ref} ≤ 295	290	25.5	0.0244
$295 < m_{ref} \le 305$	300	26.4	0.0245
305 < m _{ref} ≤ 315	310	27.3	0.0247
$315 < m_{ref} \le 325$	320	28.2	0.0248
$325 < m_{ref} \le 335$	330	29.0	0.0250
335 < m _{ref} ≤ 345	340	29.9	0.0251
$345 < m_{ref} \le 355$	350	30.8	0.0253
$355 < m_{ref} \le 365$	360	31.7	0.0254
$365 < m_{ref} \le 375$	370	32.6	0.0256
$375 < m_{ref} \le 385$	380	33.4	0.0257
$385 < m_{ref} \le 395$	390	34.3	0.0259
$395 < m_{ref} \le 395$	400	35.2	0.0260
$405 < m_{ref} \le 415$	410	36.1	0.0262
$415 < m_{ref} \le 425$	420	37.0	0.0263
$425 < m_{ref} \le 435$	430	37.8	0.0265
$435 < m_{\text{ref}} \le 445$	440	38.7	0.0266
$445 < m_{ref} \le 455$	450	39.6	0.0268
$455 < m_{ref} \le 465$	460	40.5	0.0269
$465 < m_{\text{ref}} \le 475$	470	41.4	0.0271
$475 < m_{\text{ref}} \le 475$	480	42.2	0.0271
$47.5 < m_{ref} \le 48.5$ $48.5 < m_{ref} \le 49.5$	490	43.1	0.0272
$495 < m_{\text{ref}} \le 495$ $495 < m_{\text{ref}} \le 505$	500	44.0	0.0274
493 < m _{ref} ≥ 303 每 10 kg	每 10 kg	$a = 0.088m_i$	$b = 0.000015 m_i + 0.0200$
為級距增加	為級距增加	註:取小數點2位	註:取小數點5位

⁽¹) 假如廠商宣告之最高車速不超過130 km/h,同時此最高車速無法於測試動力計上 以此表之設定a、b值來達到,則 須調整b值,使最高車速可以達到。

表 10、機車市區行車型態

操 作 次 序		段	加速度 (m/sec2)	車速 (km/h)	時 操作	間 (s) 段	累積時間 (s)	手排檔時機
1	惰速	1		0	11	11	11	6 秒 PM+5 秒 K
2	加速	2	1.04	0-15	4	4	15	
3	定速	3		15	8	8	23	依據製造廠商規範
4	減速		-0.69	15-10	2	- 5	25	
5	減速、踩離合器	4	-0.92	10-0	3] 3	28	K
6	惰速	5		0	21	21	49	16 秒 PM+5 秒 K
7	加速	6	0.74	0-32	12	12	61	
8	定速	7		32	24	24	85	依據製造廠商規範
9	減速		-0.75	32-10	8	- 11	93	
10	減速、踩離合器	8	-0.92	10-0	3] 11	96	K
11	惰速	9		0	21	21	117	16 秒 PM+5 秒 K
12	加速	10	0.53	0-50	26	26	143	
13	定速	11		50	12	12	155	
14	減速	12	-0.52	50-35	8	8	163	依據製造廠商規範
15	定速	13		35	13	13	176	1
16	減速		-0.68	35-10	9	10	185	
17	減速、踩離合器	14	-0.92	10-0	3	12	188	K
18	惰速	15		0	7	7	195	7秒PM

表 11、機車非市區車行車型態

操作序	操作名稱	段	加速度 (m/sec2)	車速 (km/h)	時	[s] (s)	累積時間	手排檔時機
次 序	14 11 AZ 44	-	(m/sec2)	(Km/n)	操作	段	(s)	2 271 100 - 2 120
1	惰速	1			20	20	20	
2	加速		0.83	0-15	5		25	
3	換檔]			2]	27	
4	加速]	0.62	15-35	9		36	
5	換檔	2			2	41	38	
6	加速	1	0.52	35-50	8	1	46	
7	換檔	1			2	1	48	
8	加速	1	0.43	50-70	13	1	61	
9	定速	3		70	50	50	111	
10	減速	4	-0. 69	70-50	8	8	119	
11	定速	5		50	69	69	188	依據製造廠商規範
12	加速	6	0.43	50-70	13	13	201	
13	定速	7		70	50	50	251	
14	加速	8	0.24	70-100	35	35	286	
15	定速	9		100	30	30	316	
16	加速	10	0.28	100-120	20	20	336	
17	定速	11		120	10	20	346	
18	減速		-0. 69	120-80	16		362	
19	减速	12	-1.04	80-50	8	34	370	
20	減速、踩離合器]	-1. 39	50-0	10]	380	
21	惰速	13			20	20	400	

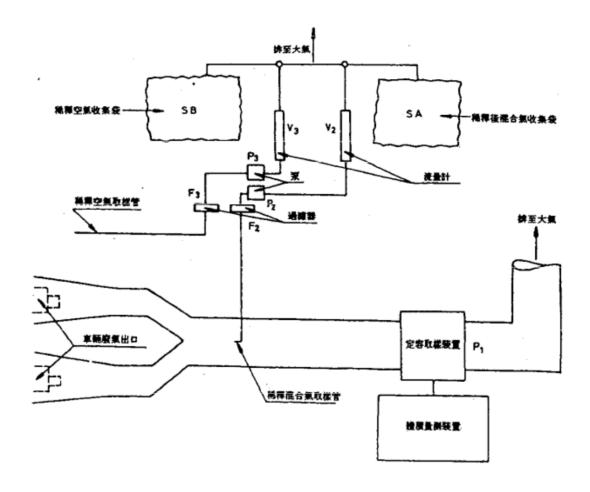


圖 4、機車廢氣取樣系統簡圖

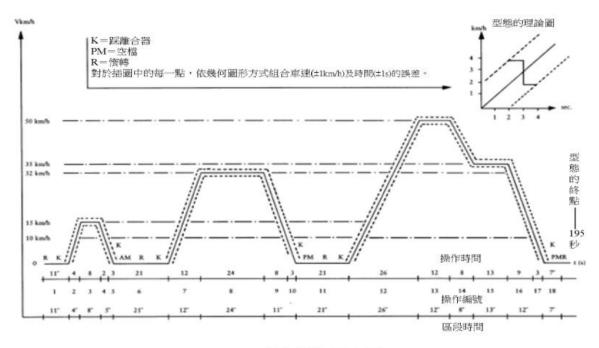


圖 5、機車市區行車型態



圖 6、機車非市區行車型態

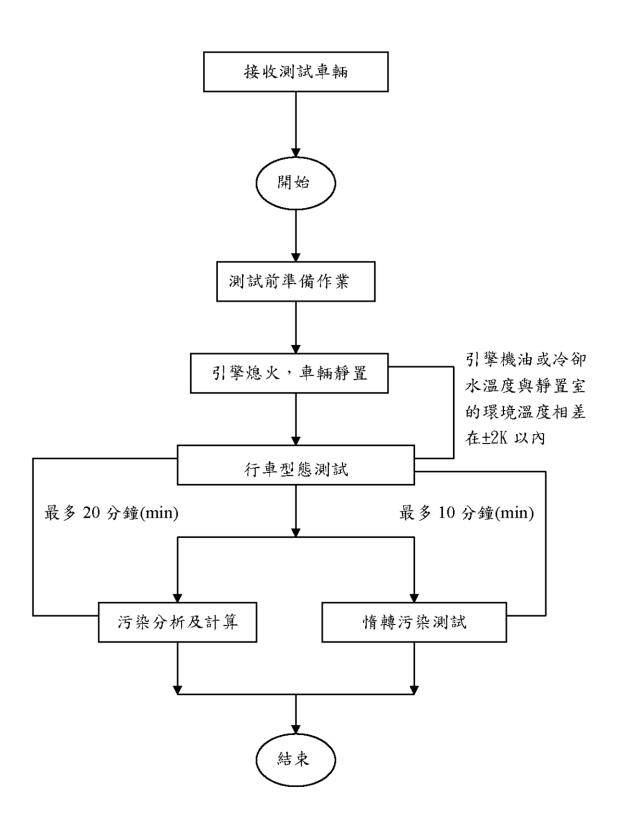


圖7、機車廢氣排放測試流程

附錄一、機車惰轉狀態污染測試程序

本程序說明「交通工具空氣污染物排放標準」中所規定之情轉狀態排氣中 CO 及 HC 含量之測試程序,CO₂ 之含量也需量測出來。本情轉狀態污染測試僅適用於火花點火引擎之機車。本測試程序也可以分開來單獨執行。

壹、測試設備與油品規格

- 一、廢氣分析儀應該屬於非發散紅外線(NDIR)型式以分析排氣中之 CO、CO₂、HC(以已烷當量(C₆H₁₄)來表示),分析儀應該要有一 適當之量測範圍,能夠充分量測到排放限制值。準確度必須在儀器刻度全幅(Full Scale)之±3%以內。分析儀之刻度對於 CO 及 CO₂ 要以 Vol%讀出,而 HC 要以 Vol-ppm 讀出,並應該定期進行校正 方可使用,且應該經常進行必要之確認動作,以符合上述之準確 度。
- 二、分析儀歸零或校正氣體之規格,應依照廢氣分析儀廠商之規定使 用。
- 三、連接到排氣管上之氣密延長管應採用內徑 4 公分(cm),長 60 公分(cm)之套管。
- 四、引擎惰轉速度應以準確度在量測值±2%以內之轉速計來量測
- 五、測試所使用之汽油,須符合本文表 8 之試驗用油規範或「車用汽 柴油成分管制標準」之規定,替代清潔燃料及混合燃料車輛,在 中央主管機關未公告測試用油規範前,應使用已商品化、市面上 可以取得之替代清潔燃料及混合燃料,複合動力電動機車,應使 用符合該內燃機燃料類別之油品規範燃料。

貳、惰轉狀態污染量測程序

- 一、打開轉速計與分析儀電源開關,依設備廠商之規定,進行適當暖 機及校正,並確認儀器正常。
- 二、啟動測試車輛,進行適當暖車。
- 三、測試車輛應在引擎達到車輛製造廠規範之正常工作溫度狀態下執行量測,具有手動或半自動排檔之車輛,必須以離合器嚙合而檔位在空檔(neutral)位置之情況下執行測試。自動排檔之車輛必須在完全關閉節流閥之情況下執行測試。
- 四、測試車輛之排氣系統不得有洩漏。
- 五、在取樣之前,分析儀應該使用周圍環境空氣或 N2來歸零。
- 六、測試車輛排氣口必須連接於氣密之延長套管,以使廢氣取樣探針可以順利插入並量測,延伸套管之形狀須能避免讓取樣探針周圍之廢氣被空氣稀釋,且不會增加排氣背壓超過 1.25 千帕(kPa),也不會影響車輛之運作。
- 七、待引擎轉速及 CO、HC 及 CO2 各別濃度在讀數穩定下來時,應記

錄污染值,CO 與 CO_2 之濃度值至少記錄至小數點以下一位數;HC 之濃度值至少記錄至整數;所有新車測試,包含新車型審驗測試、品管測試、新車抽驗(蒸發排放測試除外)以及逐車測試,須記錄引擎轉速,其值應以IPM 為單位來表示,記錄至整數。

- 八、有效檢驗數值判定之判定基準:
 - (1) 第一個篩選條件:
 - 當 $CO_2 < 3.0\%$,CO 或 HC 值超過排放標準。 當 $CO_2 \ge 3.0\%$, $CO + CO_2 \ge 8\%$ 。
 - (2) 第二個篩選條件:

當 CO₂、HC、CO 超過排氣分析儀有效量測範圍時,應以排氣分析儀量測極限值表示。

- 九、若車輛安裝有一個以上之排氣口,則這些排氣口就必須連接到同 一個管路;或必須測試每一個排氣口之濃度,再由這些濃度計算 出其算術平均值。
- 十、若車輛為複合動力電動機車,或是車輛為具自動 idle-stop 功能之機車,於適當暖車後且節流閥完全關閉狀態下,引擎自動處於不運轉狀態,且無法強制切換為惰轉狀態,則免量測惰轉污染及惰轉轉速。